Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

УТВЕРЖДАЮ

Зав.кафедрой (к911) Физика и теоретическая механика

Пячин С.А., профессор

23.05.2025

РАБОЧАЯ ПРОГРАММА

дисциплины Теоретическая механика

для специальности 23.05.03 Подвижной состав железных дорог

Составитель(и): к.ф.-м.н., Ян Д.Т.

Обсуждена на заседании кафедры: (к911) Физика и теоретическая механика

Протокол от 23.05.2025г. № 7

Обсуждена на заседании методической комиссии по родственным направлениям и специальностям: Протокол

Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2026 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2026 г. № Зав. кафедрой Пячин С.А., профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2027 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2027 г. № Зав. кафедрой Пячин С.А., профессор
Визирование РПД для исполнения в очередном учебном году
Визирование РПД для исполнения в очередном учебном году Председатель МК РНС
Председатель МК РНС
Председатель МК РНС 2028 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры
Председатель МК РНС 2028 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Председатель МК РНС
Председатель МК РНС
Председатель МК РНС

Рабочая программа дисциплины Теоретическая механика

разработана в соответствии с Φ ГОС, утвержденным приказом Министерства образования и науки Российской Федерации от 27.03.2018 № 215

Квалификация инженер путей сообщения

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 8 ЗЕТ

Часов по учебному плану 288 Виды контроля в семестрах:

в том числе: экзамены (семестр) 2, 3

контактная работа 88 РГР 2 сем. (3)

 самостоятельная работа
 128

 часов на контроль
 72

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>)	2 (1.2)		3 (2.1)		Итого	
Недель	1	7	1	8		
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ
Лекции	16	16	16	16	32	32
Практические	16	16	32	32	48	48
Контроль самостоятельно й работы	4	4	4	4	8	8
В том числе инт.	2		4		6	
Итого ауд.	32	32	48	48	80	80
Контактная работа	36	36	52	52	88	88
Сам. работа	72	72	56	56	128	128
Часы на контроль	36		36		72	
Итого	144	108	144	108	288	216

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1 Статика: реакция связей, условия равновесия плоской и пространственной систем сил, теория пар сил; кинематика: кинематические характеристики точки, сложное движение точки, частные и общий случаи движения твердого тела; динамика: дифференциальные уравнения движения точки в инерциальной и неинерциальной системах отсчета, общие теоремы динамики, аналитическая динамика, теория удара

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ						
Код дис	ециплины: Б1.О.06						
2.1	Требования к предварительной подготовке обучающегося:						
2.1.1	Высшая математика						
2.1.2	Начертательная геометрия						
2.1.3	Физика						
2.2	2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как						
	предшествующее:						
2.2.1	Сопротивление материалов						
2.2.2	Теория механизмов и машин						
2.2.3	Детали машин и основы конструирования						
224	Основы механики						

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования

Знать:

основные понятия и методы математического анализа, линейной алгебры, теории дифференциальных уравнений и основные алгоритмы типовых численных методов решения математических задач; фундаментальные понятия, теории и законы физики для решения инженерных задач; теоретические основы традиционных и новых разделов химии и способы их использования при решении инженерных химических и материаловедческих задач; основы использования вычислительной техники для моделирования и решения инженерных задач; основные законы теоретической механики для решения инженерных задач в профессиональной деятельности; основные законы термодинамики и теплопередачи для решения инженерных задач в профессиональной деятельности; основные законы термодинамики и теплопередачи для решения инженерных задач в профессиональной деятельности; принципы автоматического управления и регулирования на подвижном составе; методы линеаризации и математического описания линейных систем; особенности анализа нелинейных систем.

Уметь:

использовать фундаментальные понятия, теории и законы математики для решения инженерных задач; использовать фундаментальные понятия, теории и законы физики для решения инженерных задач; использовать фундаментальные понятия, теории и законы химии для решения инженерных задач; использовать возможности вычислительной техники и применять программное обеспечение персонального компьютера для моделирования и решения инженерных задач; использовать основные законы теоретической механики для решения инженерных задач в профессиональной деятельности; определять параметры электрических цепей постоянного и переменного тока, различать и выбирать типовые элементы электрических цепей и электрические аппараты, читать электрические схемы, использовать измерительные приборы и проводить измерения; использовать основные законы термодинамики и теплопередачи для решения инженерных задач в профессиональной деятельности; выполнять мониторинг прогнозирование и оценку экологической безопасности объектов железнодорожного транспорта; анализировать системы автоматического управления подвижным составом (САР); применять методы линеаризации и математического описания линейных систем; оценивать устойчивость и качество процессов регулирования в нелинейных САР.

Владеть:

методами математического описания и моделирования физических явлений и процессов, определяющих принципы работы подвижного состава железных дороги его систем; опытом использования возможностей вычислительной техники и применения программного обеспечения персонального компьютера для моделирования и решения инженерных задач; основными законами и методами механики; методами физико-химического анализа; методами экологического обеспечения производства и инженерной защиты окружающей среды; методами термодинамического анализа теплотехнических устройств и кузовов подвижного состава; методами выбора электрических аппаратов для типовых электрических схем систем управления; методами чтения электрических схем систем управления исполнительными машинами; терминологией «Теории автоматического управления»; подходами к математическому описанию линейных систем; основами анализа нелинейных САР.

4. СОДЕН ОТ	4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ						
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1. Раздел 1. Лекции						
1.1	Аксиомы статики. Реакция связей.	2	2		Л1.1 Л1.2	0	
1.0	Сходящаяся система сил /Пр/	2	2		П1 1	0	
1.2	Условия равновесия тела под действием плоской системы сил. Пара сил /Лек/	2	2		Л1.1	0	
1.3	Пространственная система сил /Лек/	2	4		Л1.1	0	
1.4	Равновесие с учетом трения. Трение скольжения и трение качения. Расчет ферм. Центр тяжести тела /Лек/	2	4		Л1.1	0	
1.5	Кинематика точки. Характеристики движения тела. Плоскопараллельное движение тела /Лек/	2	2		Л1.1	0	
1.6	Сложное движение точки. Виды сложных движений тела /Лек/	2	4		Л1.1	0	
1.7	Динамика точки. Дифференциальные уравнения движения точки /Лек/	3	2		Л1.1	0	
1.8	Свободные колебания материальной точки. Несвободное и относительное движение /Лек/	3	2		Л1.1	0	
1.9	Динамика механической системы. Общие теоремы динамики /Лек/	3	2		Л1.1 Л1.4	0	
1.10	Принципы динамики. Аналитическая механика /Лек/	3	4		Л1.1	0	
1.11	Уравнения Лагранжа 2 рода в обобщенных координатах /Лек/	3	4		Л1.1	0	
1.12	Основы теории удара /Лек/	3	2		Л1.1	0	
1.13	Поступательное и вращательное движение твердого тела /Пр/	2	2		Л1.1	0	
	Раздел 2. Раздел 2. Практические занятия						
2.1	Равновесие тела под действием системы сходящихся сил /Пр/	2	2		Л1.5 Л1.6	0	
2.2	Равновесие тела под действием плоской системы сил /Пр/	2	2		Л1.1 Л1.7	0	
2.3	Момент силы относительно оси. Пространственная система сил /Пр/	2	2		Л1.1 Л1.8	0	
2.4	Кинематика точки. Характеристики движения /Пр/	2	2		Л1.1 Л1.9	0	
2.5	Плоское движение твердого тела. Методы определения скоростей и ускорений точек при ППД /Пр/	2	2		Л1.1 Л1.9	0	
2.6	Сложное движение точки. Относительное, переносное и абсолютное движения /Пр/	2	2		Л1.1 Л1.9	0	
2.7	Динамика точки. Основная задача динамики. Дифференциальные уравнения движения материальной точки /Пр/	3	4		Л1.1 Л1.3	0	
2.8	Уравнение свободных колебаний /Пр/	3	4		Л1.1 Л1.3	0	
2.9	Прямолинейное движение материальной точки /Пр/	3	4		Л1.1 Л1.3	0	
2.10	Относительное и несвободное движение материальной точки /Пр/	3	4		Л1.1 Л1.3	0	
2.11	Общие теоремы динамики для механической системы /Пр/	3	4		Л1.1 Л1.3	0	

2.12	Принципы динамики. Аналитическая механика /Пр/	3	4	Л1.1 Л1.3	0	
2.13	Уравнения Лагранжа 2 рода /Пр/	3	4	Л1.1 Л1.3	0	
2.14	Основы теории удара /Пр/	3	4	Л1.1 Л1.3	0	
	Раздел 3. Раздел 3. Самостоятельная работа					
3.1	Изучение тематического материала по учебной и учебно-методической литературе /Ср/	2	25		0	
3.2	Отработка навыков решения задач по темам практических занятий /Ср/	2	27		0	
3.3	Выполнение и оформление РГР. Подготовка к защите РГР /Ср/	2	20		0	
3.4	Подготовка к тестированию по отдельным разделам и всему курсу дисциплины /Ср/	3	32		0	
3.5	Отработка навыков решения задач по темам практических занятий /Ср/	3	24		0	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Размещены в приложении

	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
	6.1. Рекомендуемая литература						
	6.1.1. Перечень основной литературы, необходимой для освоения дисциплины (модуля)						
	Авторы, составители	Заглавие	Издательство, год				
Л1.1	Жуковский Н. Е.	Теоретическая механика	М. Л.: 8-я типография ОГИЗа РСФСР "Красный Печатник", 1931, http://biblioclub.ru/index.php? page=book&id=102313				
Л1.2	Кирсанов М. Н.	Теоретическая механика	Москва: Физматлит, 2007, http://e.lanbook.com/books/ele ment.php?pl1_id=47554				
Л1.3	Доронин В.И.	Теоретическая механика. Типовые задачи и методы решения: учеб. пособие. В 3 ч. Ч. 3. Динамика	Хабаровск: Издательство ДВГУПС, 2010,				
Л1.4	Горбач Н.И.	Теоретическая механика: Динамика: Учебное пособие	Мн.: Книжный дом, 2004,				
Л1.5	Кирсанов М. Н.	Теоретическая механика. Сборник задач: Учебное пособие	Москва: ООО "Научно- издательский центр ИНФРА- М", 2015, http://znanium.com/go.php? id=487544				
Л1.6	Крамаренко Н.В.	Теоретическая механика. Часть 1. Статика, кинематика: Учебное пособие	Новосибирск: Новосибирский государственный технический университет (НГТУ), 2012, https://znanium.com/catalog/do cument?id=169740				
Л1.7	Родионов А.И., Ким В.Ф.	Теоретическая механика. Часть 2. Статика: Учебное пособие	Новосибирск: Новосибирский государственный технический университет (НГТУ), 2011, https://znanium.com/catalog/do cument?id=223542				
Л1.8	Воротынова О.В., Крафт С.Л., Фомина Л.Ю.	Теоретическая механика. Статика: Учебное пособие	Красноярск: Сибирский федеральный университет, 2020, https://znanium.com/catalog/do cument?id=380245				

Авторы, составители	Заглавие	Издательство, год
Л1.9 Косицын С.Б., Криворучко Н.М., Бегичев М.М.	Теоретическая механика. Кинематика. Ч. 2: Сборник тестовых заданий	Москва: Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта», 2018, https://znanium.com/catalog/document?id=416070

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

6.3.1 Перечень программного обеспечения

Office Pro Plus 2007 - Пакет офисных программ, лиц. 45525415

Антивирус Kaspersky Endpoint Security для бизнеса – Расширенный Russian Edition - Антивирусная защита, контракт 469 ДВГУПС

Антиплагиат - Система автоматической проверки текстов на наличие заимствований из общедоступных сетевых источников, контракт 12724018158180000974/830 ДВГУПС

АСТ тест - Комплекс программ для создания банков тестовых заданий, организации и проведения сеансов тестирования, лиц. АСТ. РМ. А096. Л08018.04, дог. 372

Microsoft Office Professional 2016

Windows 10 - Операционная система, лиц. 1203984220 ((ИУАТ)

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

Профессиональная база данных, информационно-справочная система КонсультантПлюс - http://www.consultant.ru Профессиональная база данных, информационно-справочная система Техэксперт - http://www.cntd.ru

Аудитория	Назначение	Оснащение
3417	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	комплект учебной мебели, доска, тематические плакаты
3328	Учебная аудитория для проведения занятий лекционного типа.	комплект учебной мебели, доска, тематические плакаты, экран. Технические средства обучения: мультимедиапроектор.
3317	Помещения для самостоятельной работы обучающихся. Читальный зал НТБ	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.
423	Помещения для самостоятельной работы обучающихся. зал электронной информации	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

В ходе лекционных занятий студенту необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

Уровень и глубина усвоения дисциплины зависят от активной и систематической работы на лекциях, изучения рекомендованной литературы, выполнения письменных заданий. При подготовке к экзамену необходимо ориентироваться на конспекты лекций, рекомендуемую литературу, образовательные Интернет- ресурсы.

При подготовке к практическим занятиям следует использовать основную литературу из представленного списка, а также руководствоваться приведенными указаниями и рекомендациями. Для наиболее глубокого освоения дисциплины рекомендуется изучать литературу, обозначенную как «дополнительная» в представленном списке. На практических занятиях приветствуется активное участие в обсуждении конкретных ситуаций, способность на основе полученных знаний находить наиболее эффективные решения поставленных проблем, уметь находить полезный дополнительный материал по тематике занятий.

РГР выполняется по индивидуальным исходным данным, выданным преподавателем. Порядок выполнения работы изложен в соответствующих методических указаниях издательства ДВГУПС

. Расчеты выполняются в тетради, в бланк работы вносятся лишь необходимые результаты. Графическая часть может быть выполнена вручную или в программах комплекса CREDO и AutoCAD. Защита расчетно-графической работы производится на консультации. При подготовке к защите должны использоваться источники из рекомендуемого списка литературы, а также конспекты лекций по дисциплине.

Выполнение РГР осуществляется в домашних условиях. Для защиты РГР студент самостоятельно изучает вопросы соответствующего раздела теории, повторяет физические законы и явления, необходимые для решения конкретной задачи. Защита РГР происходит на консультации, в установленное преподавателем время. Положительная отметка, полученная студентом при защите, выступает необходимой составляющей для допуска к зачету по данной дисциплине.

Примерный перечень вопросов к защите РГР:

- по теме "Статика":
- 1. Предмет статики. Основные понятия статики: абсолютно твердое тело, сила, эквивалентные и уравновешенные системы сил, равнодействующая, силы внешние и внутренние.
- 2. Геометрический и аналитический способы сложения сил. Геометрические и аналитические условия равновесия сходящихся сил. Равновесие трех непараллельных сил.
- 3. Момент силы относительно центра (точки). Пара сил. Момент пары как вектор. Эквивалентность пар. Сложение пар сил. Условия равновесия системы пар.
- 4. Главный вектор и главный момент системы сил. Теорема Вариньона о моменте равнодействующей.
- 5. Аналитические условия равновесия произвольной плоской системы сил. Различные виды систем условий равновесия. Равновесие плоской системы параллельных сил.

-по теме "Кинематика":

- 1. Предмет кинематики. Способы задания движения точки.
- 2. Определение скорости и ускорения точки при координатном способе задания движения.
- 3. Определение скорости и ускорения точки при естественном способе задания движения.
- 4. Поступательное движение твердого тела.
- 5. Вращательное движение тела. Угловая скорость и угловое ускорение.
- 6.Скорости и ускорения точек при вращательном движении
- -по теме "Динамика":
- 1. Предмет Динамика. Способы задания движения точки.
- 2.Определение параметров динамики..
- 3. Определение общих уравнений динамики.
- 4. Теория удара.

Самостоятельная работа студента.

Студенту рекомендуется в начале учебного курса познакомиться со следующей учебно-методической документацией:

□ программой дисциплины;

□ перечнем знаний и умений, которыми студент должен владеть;

□ тематическими планами практических занятий;

□ учебниками, пособиями по дисциплине, а также электронными ресурсами.

□перечнем вопросов к экзамену.

После этого у студента должно сформироваться четкое представление об объеме и характере знаний и умений, которыми надо будет овладеть в процессе освоения дисциплины.

Студенту рекомендуется следующая схема подготовки к занятию:

- 1. Проработать конспект лекций;
- 2. Прочитать основную и дополнительную литературу, рекомендованную по изучаемому разделу;
- 3. Ответить на вопросы плана семинарского занятия;
- 4. Выполнить домашнее задание;
- 5. Проработать тестовые задания и задачи;
- 6. При затруднениях сформулировать вопросы к преподавателю.

При подготовке к экзамену необходимо ориентироваться на конспекты лекций (при наличии лекционного курса по дисциплине), рабочую программу дисциплины, нормативную, учебную и рекомендуемую литературу. Основное в подготовке к сдаче зачета/экзамена - это повторение всего материала дисциплины, по которому необходимо сдавать. При подготовке к сдаче экзамена студент весь объем работы должен распределять равномерно по дням, отведенным для подготовки к экзамену, контролировать каждый день выполнение намеченной работы. В период подготовки к экзамену студент вновь обращается к уже изученному (пройденному) учебному материалу.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Обучающиеся инвалиды, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей и образовательных потребностей конкретного обучающегося.

Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде (группы в социальных сетях, электронная почта, видеосвязь и д р. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.

Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Специальность 23.05.03 ПОДВИЖНОЙ СОСТАВ ЖЕЛЕЗНЫХ ДОРОГ

Специализация: Локомотивы

Дисциплина: Теоретическая механика

Формируемые компетенции:

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект	Уровни сформированности	Критерий оценивания
оценки	компетенций	результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень Высокий уровень	Уровень результатов обучения не ниже порогового

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

Достигнутый	Характеристика уровня сформированности	Шкала оценивания
уровень результата обучения	компетенций	Экзамен или зачет с оценкой
Низкий уровень	Обучающийся: -обнаружил пробелы в знаниях основного учебно-программного материала; -допустил принципиальные ошибки в выполнении заданий, предусмотренных программой; -не может продолжить обучение или приступить к профессиональной деятельности по окончании программы без дополнительных занятий по соответствующей дисциплине.	Неудовлетворительно
Пороговый уровень	Обучающийся: -обнаружил знание основного учебно-программного материала в объёме, необходимом для дальнейшей учебной и предстоящей профессиональной деятельности; -справляется с выполнением заданий, предусмотренных программой; -знаком с основной литературой, рекомендованной рабочей программой дисциплины; -допустил неточности в ответе на вопросы и при выполнении заданий по учебно-программному материалу, но обладает необходимыми знаниями для их устранения под руководством преподавателя.	Удовлетворительно
Повышенный уровень	Обучающийся: - обнаружил полное знание учебно-программного материала; -успешно выполнил задания, предусмотренные программой; -усвоил основную литературу, рекомендованную рабочей программой дисциплины; -показал систематический характер знаний учебно-программного материала; -способен к самостоятельному пополнению знаний по учебно-программному материалу и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.	Хорошо

Высокий	Обучающийся:	Отлично
уровень	-обнаружил всесторонние, систематические и глубокие знания	
	учебно-программного материала;	
	-умеет свободно выполнять задания, предусмотренные	
	программой;	
	-ознакомился с дополнительной литературой;	
	-усвоил взаимосвязь основных понятий дисциплин и их значение	
	для приобретения профессии;	
	-проявил творческие способности в понимании учебно-	
	программного материала.	

Описание шкал оценивания Компетенции обучающегося оценивается следующим образом:

Планируемый Содержание шкалы оценивания уровень достигнутого уровня результата обучения				
результатов	Неудовлетворительн	Удовлетворительно	Хорошо	Отлично
освоения	Не зачтено	Зачтено	Зачтено	Зачтено
Знать	Неспособность обучающегося самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся способен самостоятельно продемонстриро-вать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся демонстрирует способность к самостоятельному применению знаний при решении заданий, аналогичных тем, которые представлял преподаватель, и при его	Обучающийся демонстрирует способность к самостоятельно-му применению знаний в выборе способа решения неизвестных или нестандартных заданий и при консультативной поддержке в части
Уметь	Отсутствие у обучающегося самостоятельности в применении умений по использованию методов освоения учебной дисциплины.	Обучающийся демонстрирует самостоятельность в применении умений решения учебных заданий в полном соответствии с образцом, данным преподавателем.	и при его Обучающийся продемонстрирует самостоятельное применение умений решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	межлисииплинарных Обучающийся демонстрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.
Владеть	Неспособность самостоятельно проявить навык решения поставленной задачи по стандартному образцу повторно.	Обучающийся демонстрирует самостоятельность в применении навыка по заданиям, решение которых было показано преподавателем.	Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует самостоятельное применение навыка решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.

Примерный перечень вопросов к экзамену по разделу «Статика и кинематика» Компетенция ОПК-1.

- 1.Предмет статики. Основные понятия статики: абсолютно твердое тело, сила, эквивалентные и уравновешенные системы сил, равнодействующая, силы внешние и внутренние.
- 2. Геометрический и аналитический способы сложения сил. Геометрические и аналитические условия равновесия сходящихся сил. Равновесие трех непараллельных сил.
- 3. Момент силы относительно центра (точки). Пара сил. Момент пары как вектор. Эквивалентность пар. Сложение пар сил. Условия равновесия системы пар.
- 4. Главный вектор и главный момент системы сил. Теорема Вариньона о моменте равнодействующей.
- 5. Аналитические условия равновесия произвольной плоской системы сил. Различные виды систем условий равновесия. Равновесие плоской системы параллельных сил.
 - 6.Проекция силы. Равновесие истемы сходящихся сил.
 - 7. Плоская система сил. Равновесие плоской системы непараллельных сил.
 - 8. Равновесие системы тел. Статически определимые и статически неопределимые системы.
- 9.Произвольная система сил. Момент силы относительно оси; зависимость между моментами силы относительно оси и относительно центра, находящегося на этой оси. Аналитические формулы для моментов сил относительно координатных осей.
- 10.Вычисление главного вектора и главного момента произвольной системы сил. Аналитические условия равновесия произвольной системы сил; случай параллельных сил.
- 11. Равновесие при наличии сил трения. Трение скольжения при покое (сцепление) и при движении. Коэффициент трения. Трение качения; коэффициент трения качения.
- 12.Приведение системы параллельных сил к равнодействующей. Центр параллельных сил, его радиус-вектор и координаты.
- 13. Центр тяжести твердого тела; центр тяжести объема, площади и линии. Способы определения положения центров тяжести тел.
 - 14.Предмет кинематики. Способы задания движения точки.
 - 15. Определение скорости и ускорения точки при координатном способе задания движения.
 - 16. Определение скорости и ускорения точки при естественном способе задания движения.
 - 17. Поступательное движение твердого тела.
 - 18. Вращательное движение тела. Угловая скорость и угловое ускорение.
 - 19.Скорости и ускорения точек при вращательном движении.
- 20. Уравнение плоскопараллельного движения. Определение скоростей точек тела с помощью векторного уравнения.
 - 21. Определение ускорений точек тела с помощью векторного уравнения.
 - 22.Определение скоростей точек тела с помощью мгновенного центра скоростей.
 - 23.Определение ускорений точек тела методом проекций.
 - 24.Определение ускорений точек тела с помощью мгновенного центра ускорений.
 - 25.Относительное, переносное и абсолютное движения. Теорема о сложении скоростей.
 - 26. Определение ускорения точки в сложном движении. Ускорение Кориолиса.
 - 27.Сложение поступательных движений.
 - 28. Сложение поступательного и вращательного движений. Винтовое движение.

Примерный перечень вопросов к экзамену по разделу «Динамика».

Компетенция ОПК-1:

- 1. Предмет динамики. Основные понятия и определения: масса, материальная точка, сила; постоянные и переменные силы. Законы классической механики. Инерциальная система отсчета. Задачи динамики.
- 2. Дифференциальные уравнения движения материальной точки в декартовых прямоугольных координатах и в проекциях на оси естественного трехгранника. Две основные задачи динамики для материальной точки.
- 3. Решение первой задачи динамики. Решение второй задачи динамики. Постоянные интегрирования и их определение по начальным условиям.
- 4. Дифференциальные уравнения движения материальной точки в декартовых прямоугольных координатах и в проекциях на оси естественного трехгранника. Две основные задачи динамики для материальной точки.
- 5.Свободные прямолинейные колебания материальной точки. Свободные затухающие колебания точки при сопротивлении, пропорциональные скорости.
- 6.Вынужденные колебания точки при гармонической возмущающей силе и сопротивлении, пропорциональном скорости; резонанс.
- 7.Относительное и несвободное движение материальной точки. Естественная система координат. Дифференциальные уравнения относительного движения точки; переносная и кориолисова силы инерции.
 - 8. Количество движения точки. Элементарный импульс и импульс силы за конечный промежуток

времени. Теорема об изменении количества движения точки в дифференциальной и конечной формах.

- 9.Момент количества движения точки относительно центра и оси. Теорема об изменении кинетического момента тела и системы.
- 10. Элементарная работа силы; ее аналитическое выражение. Работа силы на конечном пути. Работа силы тяжести, силы упругости и силы тяготения. Мощность. Кинетическая энергия материальной точки.
- 11. Момент инерции системы и твердого тела относительно плоскости, оси и полюса. Радиус инерции. Теорема о моментах инерции относительно параллельных осей. Основные моменты инерции некоторых тел.
 - 12. Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси.
- 13. Кинетическая энергия механической системы. Вычисление кинетической энергии твердого тела в различных случаях его движения. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.
- 14.Принцип Даламбера для материальной точки; сила инерции. Принцип Даламбера для механической системы. Главный вектор и главный момент сил инерции. Приведение сил инерции твердого тела к центру.
- 15. Равенство нулю суммы работ внутренних сил, действующих в твердом теле или в неизменяемой механической системе. Теорема об изменении кинетической энергии системы.
- 16.Определение с помощью принципа Даламбера динамических реакций при несвободном движении точки и механической системы.
- 17. Принцип возможных перемещений. Применение принципа возможных перемещений к определению реакций связей.
 - 18. Принцип Даламбера-Лагранжа; общее уравнение динамики системы.
- 19.Обобщенные координаты системы. Обобщенные силы и их вычисление. Условия равновесия системы в обобщенных координатах. Дифференциальные уравнения движения механической системы в обобщенных координатах. Уравнения Лагранжа.
 - 20.Понятие удара. Коэффициент восстановления. Применение общих теорем динамики.

Примерные практические задачи (задания) и ситуации по теме «Статика», «Кинематика» Компетенция ОПК-1:

- $1.\Gamma$ руз весом P=10 H подвешен к концу стержня AB, который удерживается под углом $6=15^{\circ}$ к горизонту при помощи троса BC. Угол между тросом и стержнем равен $B=30^{\circ}$. Определить усилия в стержнях и натяжение троса.
- $2.\Gamma$ руз весом P = 10 H подвешен на двух тросах AB и BC, составляющих с горизонтальной прямой углы $6=15^{\circ}$ и $8=30^{\circ}$. Определить усилия в тросах.
- 3.Мост состоит из двух частей. Вес каждой части 10 кH и приложен в точках C1 и C2. Обе части соединены между собой посредством шарнира D и опираются на неподвижные шарнирные опоры A и B. Мост нагружен силами P = 4 кH и F = 8 кH. Определить реакции опор A, B и шарнира D.
- 4.Стержень AB длиной г поворачивается вокруг точки A с постоянной скоростью щ . При этом он передвигает и поворачивает цилиндр радиусом г, лежащий на горизонтальном полу. В начальный момент стержень AB был горизонтален. Определить уравнения движения и траекторию заданной точки.
- 5.Квадрат, сторона которого равна 1 м, движется плоскопараллельно. В данный момент времени известны ускорения двух его вершин A и B: aA = aB = 2 м/c2. Определить ускорение вершины C и положение мгновенного центра ускорений Q квадрата.
- 6.Стержень ОА длиной 20 см поворачивается вокруг оси О с угловой скоростью щОА = 3 1/с и при помощи ползуна А приводит в движение шатун ВС шарнирного параллелограмма ВСDE (BC = DE; BD = CE = 20 см). Определить угловую скорость стержня СЕ и скорость ползуна А относительно шатуна ВС в положении механизма, определяемом углами $6=30^{\circ}$ и $в=30^{\circ}$.

Примерные практические задачи (задания) и ситуации по теме «Динамика» Компетенция ОПК-1:

- 1. Корабль движется прямым курсом под действием силы упора винтов $Q = \kappa$ t, где κ постоянная величина, t время движения. Найти закон движения корабля S = S(t), принимая во внимание, что сила сопротивления воды постоянна и равна R. R начальный момент S0 = 0, V0 = 0.
- 2. Телу весом Р сообщена вертикально вверх начальная скорость. Сила сопротивления движению R = kPV, где к –постоянный коэффициент). Найти время Т и высоту Н наибольшего подъема тела.
- 3. Частица массой m, несущая заряд отрицательного электричества e, влетает в точке A (S; 0) в однородное электрическое поле плоского конденсатора напряженностью E со скоростью V0 под углом $6=60^{\circ}$ к оси x. Вектор напряженности поля направлен противоположно оси y. Найти уравнения движения и траекторию y = f(x) частицы, зная, что в электрическом поле на нее действует сила = -e. Действием силы тяжести пренебречь.
- 4.На неподвижную проволочную окружность радиусом R, расположенную в горизонтальной плоскости, надето колечко M весом P. К этому колечку привязана упругая нить ОАМ, проходящая через кольцо A, закрепленное на окружности. Натяжение нити пропорционально ее удлинению. Длина нити в

нерастянутом состоянии равна OA, коэффициент жесткости равен с. В начальный момент колечко находилось в точке M0 (ц $0=45^{\circ}$) и имело скорость V0. Пренебрегая массой нити, трением и сопротивлением среды, определить скорость колечка и горизонтальную составляющую давления колечка на окружность в положении ц $=60^{\circ}$.

5.На тело массой m, скользящее по горизонтальной прямой, действует сила притяжения к центру 0, расположенному на этой прямой. Сила притяжения пропорциональна расстоянию тела от центра 0, коэффициент пропорциональности - $\kappa 2$ m. Считая, что движение тела началось из пункта M0, удаленного от центра 0 на расстояние без начальной скорости, определить, пренебрегая трением, скорость тела в момент прохождения им центра 0.

6.Для полиспаста определить зависимость между величиной силы Q и весом P груза A при равновесии, если r1 = r и r2 = 2 r. Весом блоков и трением пренебречь.

3. Тестовые задания. Оценка по результатам тестирования.

Тестовые задания. Оценка по результатам тестирования. Компетенция ОПК-1.

 $1.\Gamma$ руз весом P=10 H подвешен к концу стержня AB, который удерживается под углом $6=15^{\circ}$ к горизонту при помощи троса BC. Угол между тросом и стержнем равен $B=30^{\circ}$. Определить усилия в стержнях и натяжение троса.

```
a) 10, 10, 15
```

- б) 10, 12, 12
- в) 10, 15, 12
- г) 7, 7, 15
- 2. Груз весом P = 10 H подвешен на двух тросах AB и BC, составляющих с горизонтальной прямой углы $6=15^{\circ}$ и $8=30^{\circ}$. Определить усилия в тросах.
 - a) 10, 10
 - б) 10, 12
 - в) 10, 15
 - r) 7, 7
- 3. Три нити связаны в узле С. Две из них перекинуты через блоки A и B и образуют углы $6=30^{\circ}$ и $B=45^{\circ}$ с горизонтом; к концам их подвешены грузы P1 и P2. Определить P1 и P2, если вес груза Q, подвешенного к третьей нити, равен 10 H. Трение в блоках пренебречь.
 - a) 10, 10
 - б) 10, 12
 - в) 10, 15
 - г) 7, 7
- 4. Два стержня AC и BC соединены между собой и с опорой шарнирами. К шарниру C привязаны веревки CD и CE, к свободным концам которых подвешены грузы P = 10 H, Q, = 20 H; одна или обе веревки перекинуты через блоки. Пренебрегая весом стержней и трением в блоке, определить усилия в стержнях.
 - a) 10, 10
 - б) 10, 12
 - в) 10, 15
 - г) 7, 7
- 5. Мост состоит из двух частей. Вес каждой части 10 кH и приложен в точках C1 и C2. Обе части соединены между собой посредством шарнира D и опираются на неподвижные шарнирные опоры A и B. Мост нагружен силами P=4 кH и F=8 кH. Определить реакции опор A, B и шарнира D.
 - a) 10, 10
 - б) 10, 12
 - в) 10, 15
 - Γ) 7, 7
- 6. Стержень AB длиной г поворачивается вокруг точки A с постоянной скоростью щ. При этом он передвигает и поворачивает цилиндр радиусом г, лежащий на горизонтальном полу. В начальный момент стержень AB был горизонтален. Определить уравнения движения и траекторию заданной точки. Вписать правильный ответ.

- 7. Стержень AB длиной I скользит концом B по вертикальной стене, а концом A по полу, при этом VA = V = const. Определить уравнения движения и уравнение траектории точки M, если при t = 0 стержень вертикален. Вписать правильный ответ.
- 8. Равносторонний треугольник со стороной 1 м движется в плоскости чертежа. Определить ускорения точек A и B, если ускорение точки O a0 = 2 м/c2, угловая скорость $\mu = 2$ 1/c и угловое ускорение $\mu = 4$ 1/c2. Вписать правильный ответ.
- 9. Квадрат, сторона которого равна 1 м, движется плоскопараллельно. В данный момент времени известны ускорения двух его вершин A и B: aA = aB = 2 м/c2. Определить ускорение вершины C и положение мгновенного центра ускорений Q квадрата. Вписать правильный ответ.
- 10. Стержень ОА длиной 20 см поворачивается вокруг оси О с угловой скоростью щОА = 3 1/с и при помощи ползуна А приводит в движение шатун ВС шарнирного параллелограмма ВСDE (ВС = DE; ВD = CE = 20 см). Определить угловую скорость стержня СЕ и скорость ползуна А относительно шатуна ВС в положении механизма, определяемом углами б=30° и в=30°. Вписать правильный ответ.

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной системой и системой оценивания по результатам тестирования устанавливается посредством следующей таблицы:

Объект	Показатели	Оценка	Уровень
оценки	оценивания		результатов
	результатов обучения		обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

Элементы оценивания	Содержание шкалы оценивания				
	Неудовлетворительн	Удовлетворитель	Хорошо	Отлично	
	Не зачтено	Зачтено	Зачтено	Зачтено	
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам.	Значительные погрешности.	Незначительные погрешности.	Полное соответствие.	
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию.	Незначительное несоответствие критерию.	Соответствие критерию при ответе на все вопросы.	
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.).	Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы.	Полное соответствие данному критерию ответов на все вопросы.	

Умение увязывать	Умение связать	Умение связать	Умение связать	Полное
теорию с практикой,	теорию с практикой	вопросы теории	вопросы теории и	соответствие
в том числе в области	работы не	и практики	практики в	данному критерию.
профессиональной	проявляется.	проявляется	основном	Способность
работы		редко.	проявляется.	интегрировать
				знания и привлекать
				сведения из
				различных научных
				сфер.
Качество ответов на	На все	Ответы на	. Даны неполные	Даны верные ответы
дополнительные	дополнительные	большую часть	ответы на	на все
вопросы	вопросы	дополнительных	дополнительные	дополнительные
	преподавателя даны	вопросов	вопросы	вопросы
	неверные ответы.	преподавателя	преподавателя.	преподавателя.
		даны неверно.	2. Дан один	
			неверный ответ на	
			дополнительные	
			вопросы	
			преподавателя.	
	1	I	I	

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.